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Experiments evidence that optical commutation of current in semiconductor gas
discharge devices from a low to a high value may be accompanied by an oscillatory
mode of such a transient and by a long effective time for the transition. For a simple
two-component model of transport processes in these nonlinear systems, which en-
counter the main observed features in dynamics, the problem of minimizing the time
of switching on the high current state is considered. This problem can be formulated
as an optimal control problem with control function provided by a proper temporal
variation of the feeding voltage. It is shown that the optimal control can substantially
shorten the effective transient time of the process and totally suppress the occurrence
of an overshooting in a transient. Optimal control strategies for constraints on control
and state variables and for different parameters are presented.c© 2001 Academic Press
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1. INTRODUCTION

Optimal control methods for optimizing the behavior of dynamical systems have been
used in a variety of fields of applied science [1–6]. To a large extent, the success of optimal
control rests on the accurate modeling of the dynamical process via ordinary or partial
differential equations. Although many processes in applied physics are adequately modeled
by differential equations, a systematic application of optimal control methods may be rarely
found. The purpose of this paper is to provide such an example in applied physics, namely,
the optimal control of a semiconductor gas discharge image converter.

Many technical devices function in nonlinear regimes. Examples are lasers [7] and dif-
ferent semiconductor devices [8, 9]. Many applications, e.g., pulse lasers in technology and
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optical communication, require a stable and controllable operation of devices. Lippiet al.
[10–12] have suggested a method for controlling gas discharge CO2 and semiconductor
lasers to suppress oscillations in the emitted power of transient modes and to shorten the
time lag in a pulse. To reach these goals, they use a simplified dynamical model for the con-
sidered laser, namely, a two-component Lotka–Volterra system. During the past decades a
large interest has been manifested in the study of electronic microdischarge devices [13–15].
Compared to high-power discharge systems (e.g., arc discharge devices), microdischarge
devices are characterized by a small characteristic dimension of the discharge volume, by a
low density of charge carriers in the discharge gap, and, as a consequence, by a relatively low
electrical power dissipated in a device. Under these conditions, characteristic impedances
of components of a device are rather high and influence its dynamics, particularly at varying
control parameters. The peculiarities of the transient processes of gas discharge systems are
also related to its nonlinear nature.

The nonlinearity of self-sustained gas discharges originates from the mechanism of cur-
rent transport in a gas: it is related to the autocatalytic multiplication of charge carriers in
the interelectrode space of a device with electric fieldE. Therefore, the efficiency of this
process is to a large extent dependent on the amplitude of the fieldE [17]. In addition,
such a mechanism has a pseudoinductive nature: the densityN of carriers in the gap fol-
lows a variation inE with a time lag. The general feature of self-sustained gas discharges
is that they cannot operate in a stable fashion without an external load. In the opposite
case the current would grow indefinitely; evidently, this would destroy the device. Together
with the natural capacitance of the discharge volume, such a load contributes to the ca-
pacitance of the whole device. Even in the stable operation of the device, the capacitance
and the pseudoinductance can initiate the appearance of damped oscillations in transient
processes.

In the present article, we consider the problem of optimal control of one of the simplest
gas discharge systems, which is the semiconductor gas discharge device initially designed
for the conversion of infrared (IR) images to the visible range of light [15, 18]. The feeding
voltage is taken as the control function. The basic idea of our research is closely related
to the work of Lippiet al. [10–12], in which steering schemes of a gas discharge pulse
CO2 laser which improve the transient time dramatically are developed. Although these
control strategies are not derived on the basis of optimal control theory, they expose some
characteristic features of optimal bang–bang controls.

Here, we deal with a different device and, therefore, with equations different from those
in [10–12]. In the resulting optimal control model, we compute optimal control functions for
a variety of parameters and constraints. It turns out that the optimal control is a bang–bang
control exhibiting only two bang–bang arcs. The efficiency of optimal control strategies
is demonstrated by the fact that one can substantially decrease the duration of transient
processes and nearly totally suppress an overshooting in the output signal. The results
obtained can be used in applications of semiconductor gas discharge devices, such as fast
converters of infrared images [15, 18], and in the development of pulse sources of light, e.g.,
of ultraviolet excimer microdischarge lamps [13]. We indicate that the dynamical systems
considered here and in [10–12] can be transformed into the same type of Lotka–Volterra
system by an appropriate scaling of the state and time variables. Thus we may hope to
apply the optimal control methods of the present paper also to the problems considered in
[10–12]. This may eventually lead to a further refinement of results obtained in the cited
papers.
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2. THE DEVICE AND BASIC EQUATIONS

The device is presented schematically in Fig. 1. It consists of two main components: a
semiconductor layer (A) and a gas discharge domain (B). The planar structure is fed by a
voltage sourceU that is connected to plane electrodes (C) and (D), which are in contact
with the semiconductor and gas discharge components, respectively.

Other conditions being equal, the current in the device is dependent on the resistance of
the semiconductor electrode, which is a spatially distributed load for the discharge domain.
The resistivityρ of the electrode can be varied with the illumination from a source of
infrared light. In this way, the system can operate as a converter of infrared images [15, 18].
To provide high spatial resolution, the device must have a rather small thickness of the
discharge gapd that is typically on the order of 100µm. At a moderate residual pressure
of gas in the gap, the simplest (Townsend) mode of discharge is then observed in a broad
range of current density (for the definition of the Townsend discharge see, e.g., [17]). The
technical importance of the device has its origin in the fact that fast cameras which allow
the acquisition of images do exist in the visible range but not in the infrared. With the
above-mentioned converter the range of operation can be extended up to a wavelength on
the order of 11µm.

At fixed physical parameters (such as the gas pressure and thickness of both the semicon-
ductor and the discharge gap), the steady-state value of electric current density is determined
by ρ and the magnitude ofU. The response of the system to an abrupt variation of these
control parameters can be rather complicated; see Fig. 2, where an example of the transition
to a new (increased) value of current and, correspondingly, to the increased intensity of the
discharge glow is given. This transition is initiated by a step-like decrease ofρ resulting
from a pulse irradiation of the semiconductor electrode by an IR laser. This transition is

FIG. 1. Schematic presentation of the device. The layered structure consists of a semiconductor part (A) and a
gas-filled gap (B). It is fed by a dc voltageU via transparent electrodes (C, D). WhenU exceeds some critical value
Uc, a self-sustained discharge develops in the gap. The discharge emits the visible light. Its intensity is determined
by the current in the device. The value of current can be controlled by the resistivityρ of the semiconductor.
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FIG. 2. A typical response of the device to the light excitation from an infrared step-like laser pulse which
starts at timet = t0 (as indicated by the arrow). The oscilloscopic trace shows the dynamics of the discharge glow,
which has intensity proportional to the current. The negative spike in the signal att0 is due to the switching on the
electrooptical modulator of the laser setup and is not related to the dynamics of the discharge glow.

due to the internal photo effect, and we will assume throughout the paper that the change of
incoming radiation, as well as the accompanied change ofρ, is fast compared to all other
relevant time constants of the system.

Two characteristic features are seen in the response of the system to the pulsed excitation:
the existence of delay in increasing the current and the appearance of characteristic nonlinear
oscillations in kinetics. These peculiarities are quite general for systems with nonlinear
dynamics when the state is abruptly changed [10–12].

The main features in dynamical properties of the device can be described by the following
two differential equations for the electric fieldE(t) in the discharge gap at timet ≥ 0 and
the densityN(t) of the charge carriers; cf. [15, 16]:

d E

dt
= EM(t)− E(t)

τM
− bN(t)E(t), (1)

d N

dt
= N(t)

τr

(
E(t)

Ec
− 1

)
. (2)

All constants will be specified below. The quantityEM(t) is defined by

EM(t) := U (t)

d
, (3)

whereU (t) denotes the amplitude of the feeding voltage. Its typical value used practically
lies in the range 800–1000 V. Application of higher voltages may destroy the semiconductor
layer because of its electrical breakdown. Therefore, in the present analysis the following
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condition is imposed on the voltage:

0≤ U (t) ≤ 1 [kV] . (4)

However, in Section 4.1, we will also study the case of higher voltages to clarify whether
this could give an essential increase in the speed of the device compared to the control
bounds (4).

The parameterτM is proportional to the resistivityρ of the electrode [15, 16]. First,
we will study the behavior of the dynamical system (1) and (2) for the time-independent
functionU (t) ≡ 1 kV ≥ Ecd. A standard stability analysis reveals that the stationary point(

Ec,
1

bτM

(
E0

M

Ec
− 1

))
, whereE0

M := 1 kV/d in view of (3), (5)

is asymptotically stable since the eigenvaluesα1 andα2 of the Jacobian have negative real
parts:

Re(αi ) = −2.5
τr

τM
, i = 1, 2. (6)

Before starting the process att = 0, a fixed valueτM = τ 0
M is chosen. Hence, att = 0 the

system (1), (2) starts in thestablestationary point

E(0) = Ec, N(0) = N0 := 1

bτ 0
M

(
E0

M

Ec
− 1

)
. (7)

From timet= 0 on, the system (1), (2) evolves with a smaller valueτM < τ 0
M which models

an excitation. Then according to (5), thestablestationary point is given by

(Ec, Nf ) with Nf := 1

bτM

(
E0

M

Ec
− 1

)
. (8)

The subscriptf in Nf refers to the final position to be considered quantitatively later. As a
consequence of (6), the solution(E(t), N(t)) of(1), (2), using the time-independent voltage
U (t) ≡ 1 kV, converges to the stationary point (8),

lim
t→∞(E(t), N(t)) = (Ec, Nf ).

This property is confirmed by the following simulation, which has been carried out for the
parameters

d = 100µm, E0
M = 105 V/cm, Ec = 2× 104 V/cm,

(9)
b = 5× 10−3 cm3/s, τr = 10−7 s, τ 0

M = 6.5× 10−3 s,

which are close to those characteristics for the description of the converter with an initial
current of low density (for details see [15]). To model moderate excitations, the parameterτM

is varied in the range 10−5 to 10−3 s. The dashed line in Fig. 3a shows the strong oscillatory
behavior ofN(t), which is in qualitative agreement with the experimental results in Fig. 2.
Let us denote byt10 the time when the deviation of the solution(E(t), N(t)) from the
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FIG. 3. τM = 10−5 s: (a) Carrier densityN(t) for U (t)≡ 1 kV (dashed line) and for optimal controlU (t)
(solid line). (b) Optimal controlU (t).

stationary point(Ec, Nf ) in (8) is less than 10%. The values oft10 for different parameters
τM are given in Table I.

To avoid strong oscillations of the free carriers, we can benefit from the key ideas of
optimal control theory [1–3]. Instead of taking the feeding voltage as a time-constant value
U (t) ≡ 1 kV, we consider it as atime-dependentcontrol functionU (t) which is taken
from the class of piecewise continuous functions. Making use of the additional degrees of
freedom in the choice of the controlU (t), the system is able to reach the stationary point
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(8) in afinite time t f > 0; i.e., the solution satisfies

E(t f ) = Ec, N(t f ) = Nf . (10)

This goal has also been achieved in [10–12] for equations similar to (1) and (2). Going
a step further than the approach in [10–12], our objective is to minimize the timet f for
which (10) holds. It turns out that the optimized time is dramatically less than the time
t10 representing the 10% deviation from the stationary points in the uncontrolled case.
Moreover, the optimized transient time will have the favorable effect that all oscillations in
transients are suppressed.

3. MINIMAL TRANSIENT TIME BY OPTIMAL CONTROL METHODS

In this section, we study the following optimal control problem: determine a piecewise
continuous optimal control functionU : [0, t f ] → [0, 1] and a minimal final timet f such
that the solution(E(t), N(t)) of Eqs. (1) and (2) satisfies the initial and final conditions
(7) and (10). An optimal solution of this problem is characterized by first-order optimality
conditions in the form of aminimum principle[1–3]. These conditions are formulated with
the help of theHamilton functionthat has the following form in our problem:

H(E, N, λE, λN,U ) = λ0+ λE
d E

dt
+ λN

d N

dt

= λ0+ λE

(
U/d − E

τM
− bN E

)
+ λN

N

τr

(
E

Ec
− 1

)
. (11)

The scalar variablesλE, λN are calledadjoint variableswhile λ0 is a scalar satisfying
λ0 ≥ 0. Let U (t) be the optimal control,(E(t), N(t)) the optimal trajectory, andt f the
minimal final time. Then there exist continuous and piecewise differentiable functions
λE; λN : [0, t f ] → IR with (λ0, λE(t), λN(t)) 6= 0, λ0 ≥ 0 for all t ∈ [0, t f ] such that the
following three conditions hold for almost allt ∈ [0, t f ]:

1. Adjoint equations

d

dt
λE(t) = − ∂

∂E
H(E(t), N(t), λE(t), λN(t),U (t))

= λE(t)

τM
+ bλE(t)N(t)− λN(t)N(t)

τr Ec
, (12)

d

dt
λN(t) = − ∂

∂N
H(E(t), N(t), λE(t), λN(t),U (t))

= bλE(t)E(t)− λN(t)

τr

(
E(t)

Ec
− 1

)
. (13)

2. Minimum condition for the optimal control

H(E(t), N(t), λE(t), λN(t),U (t)) = min
U∈[0,1]

H(E(t), N(t), λE(t), λN(t),U ). (14)

3. Transversality condition for the autonomous system

H(E(t), N(t), λE(t), λN(t),U (t)) ≡ 0. (15)
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Note that variableU on the right side of (14) plays the role of a formal variable. Because
the control variableU enterslinearly into the Hamilton function, the minimum condition
(14) simplifies to the minimization problem

σ(t) ·U (t) = min{σ(t) ·U |U ∈ [0, 1]} for all t ∈ [0, t f ], (16)

where the so-calledswitching functionσ(t) is given by

σ(t) := ∂

∂U
H(E(t), N(t), λE(t), λN(t),U (t)) = λE(t)

τMd
. (17)

BecauseτMd > 0, the minimum condition (16) immediately leads to the following charac-
terization of the optimal control:

U (t) =


0, if λE(t) > 0,

1, if λE(t) < 0,

singular, if λE(t) ≡ 0 ∀t ∈ J := [ta, tb] ⊂ [0, t f ].

(18)

This condition means that the optimal controlU (t) can be a combination ofbang–bang
arcs, whereU (t) ∈ {0, 1} andλE(t) 6= 0 holds, andsingular arcswith λE(t) ≡ 0∀t ∈ J =
[ta, tb] ⊂ [0, t f ]. First, we exclude the case of a singular control. Suppose thatλE(t)vanishes
on a singular arc. Then the adjoint equation (12) yields the relation

0≡ d

dt
λE(t) = λE(t)

τM
+ bλE(t)N(t)− λN(t)N(t)

τr Ec
= λN(t)N(t)

τr Ec
.

In this equation we can eliminate the caseN(t) = 0, sinceN(t0) = 0 for one pointt0 ∈
[ta, tb] would entail N(t) ≡ 0 for all t ≥ t0. Hence, the last equation yieldsλN(t) ≡ 0,
which results inλ0 = 0 in view of the definition of the Hamilton function (11) and the
transversality condition (15). But the vanishing of all multipliers contradicts the statement
(λ0, λE(t), λN(t)) 6= 0∀t ∈ [0, t f ] in the minimum principle. Hence, singular arcs cannot
occur as part of the optimal control.

Thus we have shown that the switching functionσ(t), respectivelyλE(t), has only isolated
zeroes and that the optimal control is bang–bang. The optimal control can only switch from
the value 0 to 1 or vice versa at the zeroes of the switching function, which are called
switching points. The numerical task now consists in determining the number of bang–bang
arcs and the exact location of the switching points. Observe that the control law (18) does not
give any further information on the number of bang–bang arcs. To prepare the computation
of the optimal control, we shall assume the control structure

U (t) =
{

1, if 1 ≤ t < t1,

0, if t1 ≤ t < t f .
(19)

Essentially, there are two numerical methods for computing the optimal solution and verify-
ing the structure (21). Several authors have developed nonlinear optimization techniques for
solving a discretized version of the control problem. This approach has been implemented,
e.g., in the efficient code NUDOCCCS of [20]. To sketch the other method, we observe that
the optimal solution satisfies aboundary-value problem(BVP) which is composed of the
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state equations (1), (2), (7), (10), the adjoint equations (12), (13), and conditions (15), (16).
This type of a BVP can be conveniently solved byshooting methodsas implemented in the
code BNDSCO of [22].

The second method can be applied in the following way. First, one applies a Newton
method to compute the precise values of the switching pointt1 and the minimal final time
t f . These values are implicitly determined by the two terminal state conditionsE(t f ) = Ec

andN(t f ) = Nf upon using the control law (19). For the parameterτM = 10−5 s we obtain

t1 = 1.18806354µs, t f = 2.56577562µs.

The timet1, respectivelyt f , is given here with high precision only for the sake of demon-
strating the accuracy of the mathematical method. From a technical point of view it suffices
to round off to two decimal places; i.e., we havet1 = 1.19µs andt f = 2.57µs.

To compute the adjoint variablesλE(t), λN(t) we may set the multiplierλ0 = 1 in the
Hamilton function (11). In the numerical analysis of control problems, it is common practice
to assume thisnormalform of the optimality conditions. Using the transversality condition
(15), we see that the initial valueλE(0) is given by

λE(0) = − τMτ
0
M(

E0
M − Ec

)(
τ 0

M − τM
) . (20)

The final step is to compute the initial valueλN(0). This value is implicitly determined
by the switching conditionλE(t1) = 0, when integrating the adjoint equations (12) and
(13) with the initial condition (20) and the unknown valueλN(0). This procedure gives the
following numerical results:

τM = 10−5 s : λE(0) = −1.25192600× 10−10, λN(0) = −18.0900162× 10−13.

Figure 3 displays the optimal densityN(t) of carriers and the optimal controlU (t). The
dashed part of the optimal control refers to the fact that the constant voltageU (t) ≡ 1 kV, t ≥
t f = 2.57µs, is applied to keep the system at the stationary point (dashed continuation of
the trajectories in Fig. 4).

The optimal density of carriers in Fig. 3 is contrasted with the uncontrolled density of
carriers using the constant voltageU (t) ≡ 1 kV. The data clearly demonstrate the capability
of the control procedure to suppress any oscillations in the transient process. This fact is
further illustrated in Fig. 4, which depicts the the electric field and the carrier density in
greater detail. The optimal adjoint variables are shown in Fig. 5, where it is indicated that
the control laws (18) and (19) are satisfied. The optimal bang–bang control strategy in
Fig. 3 exhibits a strong similarity with control schemes proposed in [10–12] for steering
laser transients. This comes as no surprise since the Lotka–Volterra system (1) and (2)
has the same mathematical structure as the one considered in [10–12]. We shall discuss
this subject in more detail in the next section. The problem of control was not analyzed
on the basis of optimal control theory in [10–12]. We may hope therefore to validate or
refine these results by optimal control methods similar to those developed in the present
paper.

Figure 6 shows similar control strategy and behavior of the optimal density of carriers
for τM = 10−4 s. Table I summarizes the results for different values ofτM . Recall that the
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FIG. 4. Optimal solutionE(t) andN(t) for τM = 10−5 s.

notationt10 refers to the time at which the uncontrolled system withU (t) ≡ 1 kV reaches
the final stationary point within 10% accuracy. A dramatic improvement in transient times
is observed to be more distinct with increasing parameter valueτM .

The switching pointt1 has to be applied to the system with high accuracy to avoid further
oscillations. However, even for a deviation of the parameterτM within 10% of the chosen
parameterτM , one still observes a clear improvement compared to the uncontrolled device.
This property is illustrated in Fig. 7, where transient timest10 for different control functions
are given and the corresponding carrier densitiesN(t) are compared.
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TABLE I

Optimal Switching Time t1 and Final Time tf in Comparison with t10 Where

the Uncontrolled System withU(t)≡ 1 kV Reaches the Final Stationary Point

within 10% Accuracy

τM t1 t f t10

10−5 s 1.19µs 2.57µs 14µs
5× 10−5 s 2.25µs 4.98µs 67µs

10−4 s 3.01µs 6.51µs 130µs
5× 10−4 s 5.99µs 11.42µs 650µs

10−3 s 8.14µs 14.08µs >1000µs

FIG. 5. Adjoint variablesλE(t) andλN(t) for τM = 10−5 s.



406 KIM ET AL.

FIG. 6. τM = 10−4 s: (a) Carrier densityN(t) for U (t)≡ 1 kV (dashed line) and for optimal controlU (t)
(solid line). (b) Optimal controlU (t).

4. FURTHER CASES AND EXTENSIONS

In this section, we study how different bounds on the control variable and an additional
bound on the electric field affect the optimal control solution. Section 4.3 relates the dynamic
equations of the present paper to the general form of a two-dimensional Lotka–Volterra
system considered in [12].

4.1. Different Bounds on the Control Variable

In (4) we have introduced the bounds 0≤ U (t) ≤ 1 [kV] on the control variable. Instead
of these bounds we may consider more general constraints,
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FIG. 7. Carrier densityN(t) for τM = 1.1× 10−5 s using different control strategies:t10 = 16.2 µs:U (t)≡
1 kV (fine dashes);t f = 2.67µs: optimal control (bold dashes);t10 = 5.55µs: using optimal control forτM =
1.0× 10−5 s (solid line).

0≤ Umin ≤ U (t) ≤ Umax for 0≤ t ≤ t f , Umax≥ 1 [kV] . (21)

The minimization of the final timet f subject to the terminal conditions (10) and the
control constraints (21) leads again to an optimal bang–bang control with structure (19).
Mathematically, it is clear that the effective transient timedecreasesif we choose the lower
boundUmin = 0 andincreasesthe upper boundUmax> 1 since the set of admissible con-
trol functions is enlarged. For the boundsUmin = 0 kV andUmax= 2 kV, we obtain the
following results using the code BNDSCO in [22]:

τM = 10−5 s: t1 = 0.55898711µs, t f = 2.22075263µs,

λE(0) = −1.25192600× 10−10, λN(0) = −37.39775718× 10−13.

Again, the precise values are only given to prove the accuracy of the numerical method. The
corresponding optimal densities of carriers and control are shown in Fig. 8. The minimal
transient timet f is only a slight improvement over the one forUmax= 1 kV. For that reason,
there is no need to introduce a higher bound for the control at the expense of a more difficult
technical implementation.

4.2. Upper Bound on the Electric Field

Looking at the graph of the optimal electric fieldE(t) in Fig. 4, one may further put a
constraint on the electric field according to

E(t) ≤ Emax for 0≤ t ≤ t f . (22)
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FIG. 8. τM = 10−5 s: (a) carrier densityN(t) for U (t)∈ [0, 1] [kV] (dashed line) and forU (t)∈ [0, 2] [kV]
(solid line). (b) Optimal controlU (t)∈ [0, 2] [kV].

The upper bound will become active ifEmax is less than the maximal value ofE(t) in
Fig. 4. The state constraint (22) is oforder 1 since the first time derivative ofE(t) in (1)
contains the control variable explicitly. For a survey on state-constrained control problems
and the definition of the order of a state constraint, the reader may refer to Hartlet al. [4].
The typical situation for state constraints of order 1 is that the optimal solution contains a
boundary arccharacterized by

E(t) ≡ Emax for tb
1 ≤ t ≤ tb

2 , 0< tb
1 < tb

2 < t f . (23)
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The pointstb
1 andtb

2 are calledentry pointandexit pointof the boundary arc, respectively.
On a boundary arc we have the relation

0= dE

dt
=
(

U (t)/d − E(t)

τM
− bN(t)E(t)

)
,

from which the following expression for theboundary controlis obtained:

U (t) = Ub(t) := d(E(t)+ τMbN(t)E(t)) for tb
1 ≤ t ≤ tb

2 . (24)

Under the additional constraint (22) the optimal control for minimal final timet f has the
structure

U (t) =


1, if 0 ≤ t ≤ tb

1 ,

Ub(t), if tb
1 ≤ t ≤ tb

2 ,

0, if tb
2 ≤ t ≤ t f .

(25)

Choosing the upper boundEmax= 2.5× 104 V/cm, we obtain the following optimal solu-
tion using the code BNDSCO in [22]:

τM = 10−5s : tb
1 = 0.64699091µs, tb

2 = 2.63439313µs, t f = 3.16166836µs,

λE(0) = −1.25192600× 10−10, λN(0) = −7.85683006× 10−13.

The optimal control, respectively the optimal trajectoriesN(t) andE(t), are displayed in
Figs. 9 and 10.

FIG. 9. τM = 10−5 s: optimal controlU (t)∈ [0, 1] [kV] for the state constraintE(t) ≤ Emax= 2.5×
104 V/cm.
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FIG. 10. τM = 10−5 s: optimal solutionE(t) andN(t) for the state constraintE(t) ≤ Emax= 2.5× 104 V/cm.

4.3. Time Optimal Control of a Lotka–Volterra System

Lippi et al. [10–12] observed that, under appropriate scaling of state variables and time,
their dynamical system can be transformed to the Lotka–Volterra system for two speciesx
andy:

ẋ = −ε(x + xy− v), ẏ = −y+ xy, ε > 0, x(0) = x0, y(0) = y0, (26)

with given initial valuesx0 andy0. The derivative is taken with respect to a new time variable
t , which is omitted for simplicity as argument on the right-hand side. Thecontrol variable
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v satisfies the control constraint

0≤ v(t) ≤ vmax for 0≤ t ≤ t f , vmax> 0. (27)

The control problem considered in the preceding section can be brought into this form by
using the time transformationt → t/τt and by scaling the state variablesE(t), N(t) and
the control variableU (t) according to

x(t) := E(t)

Ec
, y(t) := τMbN(t), v(t) := U (t)

Ecd
.

The constantε and the initial values in (26) then becomeε := τr /τM , x(0) = 1, y(0) =
4τt/(ετ

0
M). The upper bound for the new control variablev is related to that for the old

control variableU by vmax := Umax/(Ecd). Forv(t)≡ vmaxa stationary point of the system
(26) is

(xs, ys) := (1, vmax− 1).

This stationary point is asymptotically stable forvmax> 1, which is valid forUmax= 1 kV.
The optimal controlv(t) which minimizes the final transient timet f to reach the stationary
point

x(t f ) = 1, y(t f ) = vmax− 1,

is a bang–bang control where again the singular case in a control law similar to (18) can be
excluded. In this way we are able to apply the optimal control methods of the present paper
to the situation of lasers and may thus eventually improve the control strategies proposed
in [10–12]. Numerical results will be reported in a future paper.

5. CONCLUSION

In [15, 16] the complicated physical processes occurring in a semiconductor discharge gap
image converter were analyzed. There, the reduced mathematical model that was developed
was based on the nonlinear dynamical equations (1) and (2) that contain only two state
variables. We think, however, that this model correctly encounters, at least qualitatively,
the main physical processes that occur in the device. These are the nonlinear autocatalytic
process of multiplication of charge carriers (this process is of pseudo-inductive nature; that
is, it proceeds with a time lag in response to a variation of the electric field amplitude in the
gas discharge domain) and capacitive and resistive processes.

The behavior of the system using aconstantfeeding voltage was studied in [15, 16]. In
this paper the feeding voltage has been considered as atime-dependent controlfunction
which can be adjusted to a desired purpose. An important practical issue is to determine a
control function that minimizes the transfer time between two steady states of the system.
To achieve this goal, we have usedoptimal control theoryin a systematic way to compute
optimal control functions for a variety of parameters and different constraints on control
and state variables. Essentially, the optimal control is ofbang–bang typewith only two
bang–bang arcs. The second bang–bang arc of the control has the effect that the transient
transfer time is drastically reduced compared to a constant feeding voltage. Moreover, the
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minimized transfer time has the important side effect that oscillations and overshooting
phenomena in reaching a final high current state are totally suppressed.

We stress the importance ofnonlinearprocesses in the system which provide the pos-
sibility of benefitting from the efficient optimal control strategies developed in the present
work. To further illustrate this point, let us come back to quantitative data of the present
analysis, e.g., to the results presented in Fig. 6. There, uncontrolled and controlled kinetics
of the transition to an increased current state are compared. One can see that the introduction
of the optimal control reduces the effective transition time (evaluated as the time needed to
reach a final state within 10% of accuracy) from approximately 130 to 6µs. It is instructive
to evaluate the corresponding transient time of a hypotheticallinear system that would have
resistive and capacitive properties similar to those of the one considered in the present study.

For alinearsystem, the duration of the transient process can be evaluated by calculating its
RC product, whereR is the system’s resistance andC the capacity. Again, as in Section 2,
we use the same set of system parameters as in [15]. For the characteristic timeτM =
10−4 s adopted in the calculation of data in Fig. 6, we would obtain the final current density
on the order of 200µA/cm2. Because the amplitude of the feeding voltage is 1 kV, this
corresponds to a resistance of 5× 106 Ä cm2. Because the typical capacity of the planar
structure under investigation is 5× 10−12 F/cm2 (cf. [15]), we would find theRC product
of about 25µs. To reach a final state within the accuracy of 10%, one would need to wait
for at least two time intervals of lengthRC.

We see that, in our example of a hypotheticallinear system, the duration of the transient
is on the order of 50µs, which considerably exceeds the duration of the optimal control
solution for thenonlinear system. We also point out that, to apply experimentally the
theoretical findings of the present study, one needs a high-voltage source whose output
amplitude can be varied in time according to the bang–bang strategies of Sections 3 and
4. As far as we know, today’s experimental techniques (in the first place, based on the
application of high-voltage MOSFET transistors) can meet these requirements.

As an application of the results of the present research, one can consider the fast conversion
of a spatially homogeneousoptical field from an IR domain to the visible or the near UV
range. Here, the output field is also spatially homogeneous. In this application, the steering
voltage has to be synchronized with respect to the incoming IR optical field. Currently,
we are investigating the technical implementation of this requirement. It is evident that
one needs an additional detector for the IR, which is used to determine the arrival time of
the IR radiation. Moreover, some electronic scheme would have to trigger the source of the
feeding voltage, which would then generate the pulse for the optimal bang–bang voltage.
Evidently, the requirement for such a strict synchronization may be not necessary if the
considered device is used as a pulse gas discharge lamp.

Let us mention that analogously to the control approach in [10–12] we also have dealt
with a zero-dimensional system. In other words, we are only concerned with the integral
value of an output variable whereas the spatial structure of the two-dimensional object is
not taken into consideration. It is of further interest to study the optimization procedure
in model situations where the optical field that excites the semiconductor electrode (and,
in this way, determines the spatial field ofτm) is spatially nonhomogeneousand may be
modeled by some simple partial differential equations of parabolic type.

The results obtained seem to be applicable not only to the image converter structure but
also to some other gas discharge technical devices whose dynamics can be described ade-
quately by Eqs. (1) and (2). Finally, the findings of the work may be of practical importance
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in application to other nonlinear electronic devices that work in a high-speed mode, e.g., to
semiconductor switches.
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